class RequestState:
def __init__(
self,
max_num_reqs: int,
max_model_len: int,
max_num_batched_tokens: int,
vocab_size: int,
device: torch.device,
pin_memory: bool,
):
self.max_num_reqs = max_num_reqs
self.max_model_len = max_model_len
self.max_num_batched_tokens = max_num_batched_tokens
self.vocab_size = vocab_size
self.device = device
self.pin_memory = pin_memory
self.req_id_to_index: dict[str, int] = {}
self.index_to_req_id: dict[int, str] = {}
self.free_indices = list(range(max_num_reqs))
self.extra_data: dict[str, ExtraData] = {}
self.prompt_len = np.zeros(self.max_num_reqs, dtype=np.int32)
self.prefill_token_ids = np.zeros(
(self.max_num_reqs, self.max_model_len),
dtype=np.int32,
)
self.prefill_len = self._make_buffer(self.max_num_reqs, dtype=torch.int32)
self.num_tokens = np.zeros(self.max_num_reqs, dtype=np.int32)
self.num_computed_tokens = np.zeros(self.max_num_reqs, dtype=np.int32)
# Last sampled tokens.
self.last_sampled_tokens = torch.zeros(
self.max_num_reqs,
1,
dtype=torch.int64,
device=device,
)
# LoRA.
self.lora_ids = np.zeros(self.max_num_reqs, dtype=np.int32)
self.lora_ids.fill(NO_LORA_ID)
# Sampling parameters.
self.temperature = self._make_param(self.max_num_reqs, torch.float32)
self.top_p = self._make_param(self.max_num_reqs, torch.float32)
self.top_k = self._make_param(self.max_num_reqs, torch.int32)
self.seeds = self._make_param(self.max_num_reqs, torch.int64)
self.num_logprobs = np.empty(self.max_num_reqs, dtype=np.int32)
# -1 means no logprobs are requested.
self.num_logprobs.fill(-1)
self.needs_prompt_logprobs = np.zeros(self.max_num_reqs, dtype=bool)
def _make_param(self, size: int, dtype: torch.dtype) -> "Param":
return Param(size, dtype=dtype, device=self.device, pin_memory=self.pin_memory)
def _make_buffer(self, size: int, dtype: torch.dtype) -> CpuGpuBuffer:
return CpuGpuBuffer(
size, dtype=dtype, device=self.device, pin_memory=self.pin_memory
)
@property
def num_reqs(self) -> int:
return len(self.req_id_to_index)
def add_request(
self,
req_id: str,
prompt_len: int,
prefill_token_ids: list[int],
num_computed_tokens: int,
sampling_params: SamplingParams,
lora_request: LoRARequest | None,
) -> None:
assert len(self.free_indices) > 0, "No free indices"
req_idx = self.free_indices.pop()
self.req_id_to_index[req_id] = req_idx
self.index_to_req_id[req_idx] = req_id
self.extra_data[req_id] = ExtraData(lora_request)
self.prompt_len[req_idx] = prompt_len
prefill_len = len(prefill_token_ids)
assert prefill_len >= prompt_len, (
f"prefill_len {prefill_len} < prompt_len {prompt_len}"
)
self.prefill_len.np[req_idx] = prefill_len
self.prefill_token_ids[req_idx, :prefill_len] = prefill_token_ids
self.num_tokens[req_idx] = prefill_len
self.num_computed_tokens[req_idx] = num_computed_tokens
if lora_request is not None:
self.lora_ids[req_idx] = lora_request.lora_int_id
else:
self.lora_ids[req_idx] = NO_LORA_ID
self.temperature.np[req_idx] = sampling_params.temperature
self.top_p.np[req_idx] = sampling_params.top_p
if 0 < sampling_params.top_k < self.vocab_size:
top_k = sampling_params.top_k
else:
top_k = self.vocab_size
self.top_k.np[req_idx] = top_k
if sampling_params.seed is not None:
seed = sampling_params.seed
else:
seed = np.random.randint(_NP_INT64_MIN, _NP_INT64_MAX)
self.seeds.np[req_idx] = seed
if sampling_params.logprobs is not None:
num_logprobs = sampling_params.logprobs
else:
num_logprobs = -1
self.num_logprobs[req_idx] = num_logprobs
# For now, only support prompt logprobs for the prompt tokens.
needs_prompt_logprobs = sampling_params.prompt_logprobs is not None
self.needs_prompt_logprobs[req_idx] = needs_prompt_logprobs
def remove_request(self, req_id: str) -> None:
self.extra_data.pop(req_id, None)
req_idx = self.req_id_to_index.pop(req_id, None)
if req_idx is None:
# Request not found.
return
self.index_to_req_id.pop(req_idx, None)
self.free_indices.append(req_idx)
def make_sampling_metadata(
self,
idx_mapping: np.ndarray,
pos: torch.Tensor,
) -> SamplingMetadata:
temperature = self.temperature.np[idx_mapping]
temperature = self.temperature.copy_np_to_gpu(temperature)
top_p = self.top_p.np[idx_mapping]
no_top_p = np.all(top_p == 1.0)
top_p = self.top_p.copy_np_to_gpu(top_p) if not no_top_p else None
top_k = self.top_k.np[idx_mapping]
no_top_k = np.all(top_k == self.vocab_size)
top_k = self.top_k.copy_np_to_gpu(top_k) if not no_top_k else None
seeds = self.seeds.np[idx_mapping]
seeds = self.seeds.copy_np_to_gpu(seeds)
num_logprobs = self.num_logprobs[idx_mapping]
max_num_logprobs = int(np.max(num_logprobs))
if max_num_logprobs == -1:
max_num_logprobs = None
return SamplingMetadata(
temperature=temperature,
top_p=top_p,
top_k=top_k,
seeds=seeds,
pos=pos,
max_num_logprobs=max_num_logprobs,
)
def make_lora_inputs(
self,
req_ids: list[str],
idx_mapping: np.ndarray,
num_scheduled_tokens: np.ndarray,
) -> tuple[tuple[int, ...], tuple[int, ...], set[LoRARequest]]:
lora_ids = self.lora_ids[idx_mapping]
prompt_lora_mapping = tuple(lora_ids)
token_lora_mapping = tuple(lora_ids.repeat(num_scheduled_tokens))
active_lora_requests: set[LoRARequest] = set()
for req_id in req_ids:
lora_request = self.extra_data[req_id].lora_request
if lora_request is not None:
active_lora_requests.add(lora_request)
return prompt_lora_mapping, token_lora_mapping, active_lora_requests