Skip to content

vllm.transformers_utils.configs.kimi_linear

logger module-attribute

logger = init_logger(__name__)

KimiLinearConfig

Bases: PretrainedConfig

Source code in vllm/transformers_utils/configs/kimi_linear.py
class KimiLinearConfig(PretrainedConfig):
    model_type = "kimi_linear"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        model_type="kimi_linear",
        vocab_size=163840,
        hidden_size=4096,
        head_dim=None,
        intermediate_size=11008,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=None,
        hidden_act="silu",
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        rope_theta=10000.0,
        rope_scaling=None,
        tie_word_embeddings=False,
        moe_intermediate_size: int | None = None,
        moe_renormalize: bool = True,
        moe_router_activation_func: str = "sigmoid",
        num_experts: int | None = None,
        num_experts_per_token: int | None = None,
        num_shared_experts: int = 0,
        routed_scaling_factor: float = 1.0,
        first_k_dense_replace: int = 0,
        moe_layer_freq: int = 1,
        use_grouped_topk: bool = True,
        num_expert_group: int = 1,
        topk_group: int = 1,
        q_lora_rank: int | None = None,
        kv_lora_rank: int | None = None,
        qk_nope_head_dim: int | None = None,
        qk_rope_head_dim: int | None = None,
        v_head_dim: int | None = None,
        mla_use_nope: bool | None = False,
        num_nextn_predict_layers: int = 0,
        linear_attn_config: dict | None = None,
        **kwargs,
    ):
        self.model_type = model_type
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.head_dim = (
            head_dim if head_dim is not None else hidden_size // num_attention_heads
        )
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling

        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.mla_use_nope = mla_use_nope
        # moe config
        self.num_experts = num_experts
        self.num_experts_per_token = num_experts_per_token
        self.moe_renormalize = moe_renormalize
        self.num_shared_experts = num_shared_experts
        self.routed_scaling_factor = routed_scaling_factor
        self.moe_router_activation_func = moe_router_activation_func
        assert self.moe_router_activation_func in ("softmax", "sigmoid")
        self.moe_intermediate_size = moe_intermediate_size
        self.first_k_dense_replace = first_k_dense_replace
        self.moe_layer_freq = moe_layer_freq
        self.use_grouped_topk = use_grouped_topk
        self.num_expert_group = num_expert_group
        self.topk_group = topk_group
        self.num_nextn_predict_layers = num_nextn_predict_layers

        if linear_attn_config is not None:
            assert linear_attn_config["kda_layers"] is not None
            assert linear_attn_config["full_attn_layers"] is not None
        self.linear_attn_config = linear_attn_config

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    @property
    def is_mla(self):
        return (
            self.q_lora_rank is not None
            or self.kv_lora_rank is not None
            or self.qk_nope_head_dim is not None
            or self.qk_rope_head_dim is not None
            or self.v_head_dim is not None
            or self.mla_use_nope is True
        )

    @property
    def is_moe(self):
        return self.num_experts is not None

    @property
    def is_linear_attn(self) -> bool:
        return not (
            self.linear_attn_config is None
            or (
                isinstance(self.linear_attn_config, dict)
                and self.linear_attn_config["kda_layers"] is not None
                and len(self.linear_attn_config["kda_layers"]) == 0
            )
        )

    def is_kda_layer(self, layer_idx: int):
        return (
            self.linear_attn_config is not None
            and (layer_idx + 1) in self.linear_attn_config["kda_layers"]
        )

first_k_dense_replace instance-attribute

first_k_dense_replace = first_k_dense_replace

head_dim instance-attribute

head_dim = (
    head_dim
    if head_dim is not None
    else hidden_size // num_attention_heads
)

hidden_act instance-attribute

hidden_act = hidden_act

hidden_size instance-attribute

hidden_size = hidden_size

initializer_range instance-attribute

initializer_range = initializer_range

intermediate_size instance-attribute

intermediate_size = intermediate_size

is_linear_attn property

is_linear_attn: bool

is_mla property

is_mla

is_moe property

is_moe

keys_to_ignore_at_inference class-attribute instance-attribute

keys_to_ignore_at_inference = ['past_key_values']

kv_lora_rank instance-attribute

kv_lora_rank = kv_lora_rank

linear_attn_config instance-attribute

linear_attn_config = linear_attn_config

mla_use_nope instance-attribute

mla_use_nope = mla_use_nope

model_type class-attribute instance-attribute

model_type = model_type

moe_intermediate_size instance-attribute

moe_intermediate_size = moe_intermediate_size

moe_layer_freq instance-attribute

moe_layer_freq = moe_layer_freq

moe_renormalize instance-attribute

moe_renormalize = moe_renormalize

moe_router_activation_func instance-attribute

moe_router_activation_func = moe_router_activation_func

num_attention_heads instance-attribute

num_attention_heads = num_attention_heads

num_expert_group instance-attribute

num_expert_group = num_expert_group

num_experts instance-attribute

num_experts = num_experts

num_experts_per_token instance-attribute

num_experts_per_token = num_experts_per_token

num_hidden_layers instance-attribute

num_hidden_layers = num_hidden_layers

num_key_value_heads instance-attribute

num_key_value_heads = num_key_value_heads

num_nextn_predict_layers instance-attribute

num_nextn_predict_layers = num_nextn_predict_layers

num_shared_experts instance-attribute

num_shared_experts = num_shared_experts

q_lora_rank instance-attribute

q_lora_rank = q_lora_rank

qk_nope_head_dim instance-attribute

qk_nope_head_dim = qk_nope_head_dim

qk_rope_head_dim instance-attribute

qk_rope_head_dim = qk_rope_head_dim

rms_norm_eps instance-attribute

rms_norm_eps = rms_norm_eps

rope_scaling instance-attribute

rope_scaling = rope_scaling

rope_theta instance-attribute

rope_theta = rope_theta

routed_scaling_factor instance-attribute

routed_scaling_factor = routed_scaling_factor

topk_group instance-attribute

topk_group = topk_group

use_cache instance-attribute

use_cache = use_cache

use_grouped_topk instance-attribute

use_grouped_topk = use_grouped_topk

v_head_dim instance-attribute

v_head_dim = v_head_dim

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(
    model_type="kimi_linear",
    vocab_size=163840,
    hidden_size=4096,
    head_dim=None,
    intermediate_size=11008,
    num_hidden_layers=32,
    num_attention_heads=32,
    num_key_value_heads=None,
    hidden_act="silu",
    initializer_range=0.02,
    rms_norm_eps=1e-06,
    use_cache=True,
    pad_token_id=0,
    bos_token_id=1,
    eos_token_id=2,
    rope_theta=10000.0,
    rope_scaling=None,
    tie_word_embeddings=False,
    moe_intermediate_size: int | None = None,
    moe_renormalize: bool = True,
    moe_router_activation_func: str = "sigmoid",
    num_experts: int | None = None,
    num_experts_per_token: int | None = None,
    num_shared_experts: int = 0,
    routed_scaling_factor: float = 1.0,
    first_k_dense_replace: int = 0,
    moe_layer_freq: int = 1,
    use_grouped_topk: bool = True,
    num_expert_group: int = 1,
    topk_group: int = 1,
    q_lora_rank: int | None = None,
    kv_lora_rank: int | None = None,
    qk_nope_head_dim: int | None = None,
    qk_rope_head_dim: int | None = None,
    v_head_dim: int | None = None,
    mla_use_nope: bool | None = False,
    num_nextn_predict_layers: int = 0,
    linear_attn_config: dict | None = None,
    **kwargs,
)
Source code in vllm/transformers_utils/configs/kimi_linear.py
def __init__(
    self,
    model_type="kimi_linear",
    vocab_size=163840,
    hidden_size=4096,
    head_dim=None,
    intermediate_size=11008,
    num_hidden_layers=32,
    num_attention_heads=32,
    num_key_value_heads=None,
    hidden_act="silu",
    initializer_range=0.02,
    rms_norm_eps=1e-6,
    use_cache=True,
    pad_token_id=0,
    bos_token_id=1,
    eos_token_id=2,
    rope_theta=10000.0,
    rope_scaling=None,
    tie_word_embeddings=False,
    moe_intermediate_size: int | None = None,
    moe_renormalize: bool = True,
    moe_router_activation_func: str = "sigmoid",
    num_experts: int | None = None,
    num_experts_per_token: int | None = None,
    num_shared_experts: int = 0,
    routed_scaling_factor: float = 1.0,
    first_k_dense_replace: int = 0,
    moe_layer_freq: int = 1,
    use_grouped_topk: bool = True,
    num_expert_group: int = 1,
    topk_group: int = 1,
    q_lora_rank: int | None = None,
    kv_lora_rank: int | None = None,
    qk_nope_head_dim: int | None = None,
    qk_rope_head_dim: int | None = None,
    v_head_dim: int | None = None,
    mla_use_nope: bool | None = False,
    num_nextn_predict_layers: int = 0,
    linear_attn_config: dict | None = None,
    **kwargs,
):
    self.model_type = model_type
    self.vocab_size = vocab_size
    self.hidden_size = hidden_size
    self.head_dim = (
        head_dim if head_dim is not None else hidden_size // num_attention_heads
    )
    self.intermediate_size = intermediate_size
    self.num_hidden_layers = num_hidden_layers
    self.num_attention_heads = num_attention_heads

    # for backward compatibility
    if num_key_value_heads is None:
        num_key_value_heads = num_attention_heads

    self.num_key_value_heads = num_key_value_heads
    self.hidden_act = hidden_act
    self.initializer_range = initializer_range
    self.rms_norm_eps = rms_norm_eps
    self.use_cache = use_cache
    self.rope_theta = rope_theta
    self.rope_scaling = rope_scaling

    self.q_lora_rank = q_lora_rank
    self.kv_lora_rank = kv_lora_rank
    self.qk_nope_head_dim = qk_nope_head_dim
    self.qk_rope_head_dim = qk_rope_head_dim
    self.v_head_dim = v_head_dim
    self.mla_use_nope = mla_use_nope
    # moe config
    self.num_experts = num_experts
    self.num_experts_per_token = num_experts_per_token
    self.moe_renormalize = moe_renormalize
    self.num_shared_experts = num_shared_experts
    self.routed_scaling_factor = routed_scaling_factor
    self.moe_router_activation_func = moe_router_activation_func
    assert self.moe_router_activation_func in ("softmax", "sigmoid")
    self.moe_intermediate_size = moe_intermediate_size
    self.first_k_dense_replace = first_k_dense_replace
    self.moe_layer_freq = moe_layer_freq
    self.use_grouped_topk = use_grouped_topk
    self.num_expert_group = num_expert_group
    self.topk_group = topk_group
    self.num_nextn_predict_layers = num_nextn_predict_layers

    if linear_attn_config is not None:
        assert linear_attn_config["kda_layers"] is not None
        assert linear_attn_config["full_attn_layers"] is not None
    self.linear_attn_config = linear_attn_config

    super().__init__(
        pad_token_id=pad_token_id,
        bos_token_id=bos_token_id,
        eos_token_id=eos_token_id,
        tie_word_embeddings=tie_word_embeddings,
        **kwargs,
    )

is_kda_layer

is_kda_layer(layer_idx: int)
Source code in vllm/transformers_utils/configs/kimi_linear.py
def is_kda_layer(self, layer_idx: int):
    return (
        self.linear_attn_config is not None
        and (layer_idx + 1) in self.linear_attn_config["kda_layers"]
    )